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ABSTRACT: Speckle tracking echocardiography (STE) is widely used to 

quantify regional motion and deformation of heart tissues. Before tracking, a 

segmentation step is first carried out, and only a set of nodes in the segmented 

model are tracked. However, a random selection of the nodes even after tissue 

segmentation could lead to an inaccurate estimation. In this paper, a 

convolutional neural network (CNN)-based method is presented to detect 

trackable speckle spots that have important properties of the texture for 

speckle tracking. The proposed CNN was trained and validated on 29500 

ultrasound manually labelled image patches extracted from the 

echocardiography of 65 people. Using the proposed network, in silico 

experiments for automatic node selection were conducted to investigate the 

applicability of the proposed method in speckle tracking. The results were 

statistically highly significant (P<.001) and demonstrated that the proposed 

method has the least tracking error among various existing methods. 
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1.0 INTRODUCTION 

Ultrasound imaging is a promising modality for medical diagnosis, 
mostly because it is non-invasive, cheap and easy to use [1-3]. 
Echocardiography, in particular, is an ultrasound-based tool for 
cardiac imaging which is vastly used for identifying heart defects [4]. 
In addition to visual assessment of the heart, many computer-aided 
and fully automatic techniques have been proposed for qualitative and 
quantitative cardiac function evaluations [5-7]. Tracking the 
myocardium and calculating its elasticity provides us with a common 
method of quantifying the mechanical activity of the heart [8]. Two-
dimensional (2D) speckle tracking is commonly used for tissue tracking 
based on ultrasound B-mode images. [9,10].  

Speckles are the bright points seen in an echocardiogram, which are 
the results of diffuse scattering [10]. Since speckles are caused by 
interference of backscattered signals from extremely small 
neighbouring elements in the tissue, the speckle pattern is strictly 
correlated with the microstructure of the underlying tissue [11]. As a 
result, the topological pattern of closely-connected speckles is usually 
similar over consecutive frames and can be used for tracking [12]. 
However, speckles are not always suitable for tracking and could lead 
to misestimating displacements in speckle tracking. Hence, speckle 
detection algorithms are not useful for spotting trackable speckle 
patterns. 

Speckle tracking methods essentially use mentioned property of 
speckle pattern to estimate the displacement of desired points between 
two or more frames. Occasionally, speckle tracking is carried out for 
each point of the entire image or at least of the segmented model [9,12]. 
But more likely, a segmentation is first carried out, and only a selection 
of nodes is tracked. Either way, nodes should be selected wisely in a 
suitable way for tracking purposes; otherwise, it could lead to 
miscalculation of displacement, even for a node selected randomly or 
manually from the segmented region[13]. The tracking nodes are 
usually selected manually and occasionally automatically based on 
textural features. Manually selecting nodes depends on the observer's 
precision and is often difficult to proceed. Therefore, automatic node 
selection methods are preferred for their accuracy and speed compared 
to observer's judgment. As explained in [14] and [11], speckle 
characterization and detection methods are useful for selecting 
important and informative regions of the image and, therefore, node 
selection.  
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The earliest approaches for image-based speckle characterization 
were mostly based on the extraction of the first-order features. Mean, 
variance, skewness, kurtosis and energy are some of these texture 
statistics that can be calculated from the first-order histogram of the 
gray level image. Speckle discrimination properties of statistics were 
evaluated by Prager et al. [15] using a combination of simulations and 
the homodyned-k distribution. Marti et al. [16] presented a fully 
automatic speckle detection method by computing the statistical 
features from the ultrasound image and finding optimally discriminant 
low-order speckle statistics. They succeeded in classifying regions as 
speckle or non-speckle by defining application-specific discriminant 
functions. Azar et al. [17] proposed a new combination of statistical 
features and explored their properties for speckle detection. These 
features were used as inputs to unsupervised clustering algorithms for 
the speckle classification. However, first-order statistics contain 
information only about the intensity values and the gray level 
distribution of the image, not about the pixel neighbourhood 
relationships. Therefore, the statistic features for two different 
windows (one with a speckle pattern, the other with a non-speckle 
pattern) with similar first-order histograms are indistinguishable. As a 
solution, second-order features derived from the co-occurrence matrix 
can represent this spatial relationship between pixels. These features 
include angular second moment, correlation, contrast and entropy, also 
known as Haralick features [18]. In [19] and [20], Wagner et al. 
evaluated second-order statistics for detecting and classification of 
speckle texture in diagnostic ultrasound. Carmo et al. [21] assessed the 
performance of several speckle detection methods that employed co-
occurrence matrices for B-mode images. Widynski et al. [14] proposed 
a method for speckle spot detection using a morphological tree 
representation. They used detected speckle spots as markers for 
speckle tracking. 

As shown in the result section, existing methods are not sufficient 
for automatic detection of suitable nodes, which is mainly because of 
two reasons: first, speckle patterns are complicated; therefore, it is not 
easy to model them based on some first and second-order features, 
second, mostly the information in the consecutive frame for detecting 
trackable speckles has been neglected. Moreover, Brynolfsson et al. [22] 
reported that Haralick features are sensitive to the image data. The 
result is highly dependent on parameter settings such as noise, 
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resolution and number of gray levels. 

Since deep learning has been recently used as a powerful alternative 
for ultrasound image enhancement, segmentation and speckle 
reduction [23-25], it seems interesting to employ convolutional neural 
networks in speckle detection applications. Although numerous 
advanced techniques have been proposed for ultrasound speckle 
reduction [23-26], many studies on speckle detection based on 
ultrasound B-mode images are limited [11,21]. 

This study proposes a convolutional neural network (CNN) with a 
specialized structure for detecting trackable speckle spots, which can 
be employed in ultrasound speckle tracking applications. Specifically, 
we are interested in regions where speckle pattern has more properties 
of texture and stability over time, making them useful for tracking. The 
proposed network is able to classify a region of interest into two 
categories of trackable-speckle and non-trackable patterns. It should be 
noted that a region is defined as a squared window, and a node is 
placed at the centre of the window. 

In order to find the optimal network, several CNNs with different 
configurations were trained and tested on a labelled dataset, including 
about 29500 image patches of ultrasound trackable-speckle and non-
trackable patterns. To evaluate the network's performance, a 
comprehensive comparison between the proposed method and the 
existing methods, i.e. combination of feature extraction and supervised 
learning methods, was conducted. In order to investigate the 
applicability of the proposed method in speckle tracking, in silico 
experiments were conducted and compared with the state-of-the-art 
methods. The rest of the paper is organized as follows: In section 2, the 
concepts, methods and problems in speckle detection are briefly 
explained. In section 3, the proposed method is examined in detail. 
Section 4 explains the procedure of data preparation and conducting 
experiments. The results of the network-tuning and the evaluations are 
presented in section 5, and finally, section 6 concludes the study. 

 

2.0 BACKGROUND 

In this section, the importance and background of speckle detection are 
briefly explained. Specifically, the conventional approach for speckle 
detection is overviewed. 
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2.1 Speckle Detection 

Speckles are also known as natural acoustic markers because they 
result from accumulating backscattered echoes from small elements in 
the tissue. Although they cannot exactly represent the structure of the 
tissue and are considered noises in some cases, speckles are highly 
correlated with the underlying microstructure of the tissue [11]. As a 
result, speckles within a window are usually stable and can be tracked 
when the associated region of the tissue moves [13,27]. 

A well-established algorithm for speckle tracking is block matching 
[28]. Considering that Frame A and Frame B are two consecutive 
frames in a sequence of echocardiograms, in the block matching 
technique, a window in frame a is compared with the neighbouring 
windows in frame b. The window with the highest matching score in 
frame b is considered the best match for the window in frame a. This 
selection is how we can tell that a tissue region is moved to a new 
position. In order to achieve accurate tissue tracking, the window in the 
frame should have a stable, trackable speckle pattern; otherwise, it 
leads to poor estimation of the new location. In other words, speckles 
with a similar topological structure over the next few frames are the 
best choices for speckle tracking. In this study, trackable speckle 
detection is a term that is used for examining whether a window has 
such a speckle pattern or not. Here, the window examined in speckle 
detection is called the target window. A window extracted from an 
image is also known as a patch. 

In this study, the following criteria were considered as the 
underlying rule to classify the trackable speckle visually: "A batch of 
closely-connected speckles in a frame appears in the next frame with or 
without a geometric transformation, following a similar topology". 
Based on [14], the underlying definition of a speckle pattern is purely 
topological. Therefore, no assumption should be made about the 
intensity values. 

 

2.2 Conventional Approach 

A common technique for speckle detection usually uses feature 
extractors and machine learning models [11,17]. First, a set of statistical 
features is calculated for the target window. Then a decision is made to 
recognize the window either as trackable-speckle or non-trackable 
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patterns based on these values. Supervised classifiers can perform this 
categorizing task. It is worth mentioning that the performance of the 
speckle detector is highly dependent on the features and the supervised 
learning algorithm that we choose. Here, to compare our proposed 
model with conventional methods, the optimal combination of features 
and models is explained. A set of features suitable for speckle detection 
based on the first-order and second-order (specifically Haralick 
features [18]) statistics includes Mean, Variance, Skewness, Kurtosis, 
Angular Second Moment (ASM), Contrast, Correlation and 
Homogeneity [16,29]. Their mathematical formulas are described in 
Table 1. The first four measures can be calculated based on pixel 
intensity, while the rest should be computed using the co-occurrence 
matrix. A co-occurrence matrix (P ) displays the frequency that two 
pixels with gray levels I1 and I2 appear in the window separated by a 
relative distance d in relative orientation θ [30]. Formally, given the 
image f with a set of G discrete intensity levels, the 

matrix Pdθ(i, j) is defined such that its (i, j)th entry is equal to the 
number of times that 

𝑓(𝑥1, 𝑦1)  =  𝑖 𝑎𝑛𝑑 𝑓(𝑥2, 𝑦2)  =  𝑗 (1) 

where 

(𝑥2, 𝑦2)  =  (𝑥1, 𝑦1) + (𝑑 𝑐𝑜𝑠 𝜃, 𝑑 𝑠𝑖𝑛 𝜃). (2) 

In the matrix 𝑃𝑑𝜃(𝑖, 𝑗), i and j represent rows and columns, respectively. 

 

A short description for each feature is as follows. The Mean 
represents the average level of intensity of the window being 
examined. The Variance measures how far the intensity values are 
spread out from the mean. Skewness and Kurtosis indicate the degree 
of histogram asymmetry around the mean and the histogram 
sharpness, respectively. ASM is also known as Energy which measures 
the smoothness of the image. The Contrast represents the local level of 
differences. The relation between pixels in two different directions is 
measured by Correlation. Finally, low-contrast images show high 
values for Homogeneity. Equation (2) indicates that changing d and θ 
results in different co-occurrence matrices and, consequently, several 
versions of Haralick features. Four angles of 0°, 45°, 90° and 135° are 
usually picked as the orientation θ. Since choices for d depends on the 
image parameters, e.g. texture, resolution and dimensions, three 
relative distances of 1px, 3px and 7px were considered. In practice, for 
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each d, the resulting values for the four directions are averaged out. 
Thus, the total number of features extracted for each image patch in the 
dataset was sixteen.  

Table 1. Mathematical description of selected first-order and second-order 

features 
Feature Formula 

Mean(m) 
∑

𝑓(𝑥, 𝑦)

𝑀 × 𝑁

𝑀,𝑁

𝑥 ,𝑦

 

Variance(σ2) 
∑

(𝑓(𝑥, 𝑦) − 𝑚)2

𝑀 × 𝑁

𝑀,𝑁

𝑥,𝑦

 

Skewness 
∑

(𝑓(𝑥, 𝑦) − 𝑚)3

𝑀 × 𝑁 × 𝜎3

𝑀,𝑁

𝑥,𝑦

 

Kurtosis 
∑

(𝑓(𝑥, 𝑦) − 𝑚)4

𝑀 × 𝑁 × 𝜎4

𝑀,𝑁

𝑥,𝑦

 

ASM ∑ 𝑃 (𝑥, 𝑦)2

𝑖,𝑗

 

Contrast ∑ |𝑖 −  𝑗|2

𝑖,𝑗

+  𝑙𝑜𝑔 𝑃 (𝑥, 𝑦)2  

Correlation 
∑

(𝑖 − µ𝑖 ) × (𝑗 − µ𝑗)

𝜎𝑖 × 𝜎𝑗
𝑖,𝑗

×  𝑃 (𝑖, 𝑗) 

Homogeneity 
∑

𝑃 (𝑖, 𝑗)

1 + |𝑖 − 𝑗|2

𝑖,𝑗

 

Note: µ𝑖, µ𝑗, σ𝑖 and σ𝑗 are the means and standard deviations of resulted vectors from 

summing the columns and rows of 𝑃 (𝑖, 𝑗), respectively. 

In the classification stage, three classifiers of K-Nearest Neighbor 
(KNN), Random Forest and AdaBoost were employed to label the 
image patch as trackable-speckle or non-trackable patterns based on 
the extracted features. 

 

2.3 Problems 

A conventional method has three major drawbacks that lead to poor 
trackable-speckle spot detection. The first one is the selection of texture 
features based on which building a precise model of the complex 
pattern of ultrasound speckles becomes difficult. The second one 
concerns that the initial parameters for feature calculation, e.g. d and θ, 
should be selected concerning the image's properties such as noise, 
resolution and texture. The conventional approach's last and most 
important problem is that it relies only on the target window and 
ignores the next frame's information for detecting a trackable pattern. 
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3.0 THE PROPOSED METHOD 

This section introduces a convolutional neural network (CNN) with a 
novel architecture, called SpeckleDNet, to address the issues explained 
in section 2.3 for trackable speckle detection. 

An important aspect of a CNN is that the feature extraction process 
is integrated into the network, not as a distinct but inseparable part 
from the learning process. This architecture lets the network to 
adaptively learn and extract the most discriminative features based on 
the relation between the inputs and outputs. Thus, SpeckleDNet 
inherently solves the problems of the conventional approach related to 
the selection of features. But the innovational aspect of SpeckleDNet is 
that it also takes advantage of the next frame because, as discussed in 
section 2.1, considering the next frame as a complementary source is 
beneficial for achieving higher performance in detecting trackable 
speckle spots. 

The duty of SpeckleDNet is to correctly classify a target window into 
two categories of trackable-speckle or non-trackable patterns with the 
help of the complimentary window. As shown in Figure 1, the target 
window is a window in the frame meant to be classified, while the 
complementary window (patch) is the window in frame b that should 
be used as the extra information. Both windows have the same central 
position in the frames. Since the speckles within the target window 
might have a displacement between frames a and b, the size of the 
complementary window is considered twice the size of the target 
window to contain surrounding pixels. Since the network is trained 
with patches with different sizes, the size of the region of interest can 
be selected from 12×12 to 48×48 pixels. Therefore, the windows should 
be eventually resized to fit the dimensions of the corresponding input 
layer. 

In order to process both the target and complementary windows, 
SpeckleDNet has a dual-path structure with two distinct input gates. 
As illustrated in Figure 2, the two pathways are called the main 
pathway and the complementary pathway. The main pathway itself is 
divided into two parts named primary-path and merge-path. The 
complementary pathway can be merged into the main pathway by 
concatenating the outputs of the complement pathway and the primary 
path together and feeding the concatenation result to the merge path. 
So, the output dimensions of the complement pathway and the primary 
path are the same. After running comprehensive experiments, the 
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optimal architecture for SpeckleDNet was fine-tuned as follows. The 
dimensions of the input layers are 30×30 and 40×40 pixels for the main 
and complementary pathways, respectively, which any user input 
image will be resized to. The main pathway starts with the primary 
part, which consists of two consecutive convolutional layers of Conv 
(3×3)×32 and Conv (3×3)×128, and one MaxPooling (3×3) layer. The 
complementary path includes a combination of convolution and 
pooling layers in the following order: Conv (3×3)×32, MaxPooling (2×2), 
Conv (3×3) ×64, Conv (3×3)×64 and MaxPooling (2×2). Through these 
two paths, the dimensions of the target and complementary windows 
are gradually reduced to the same size of 13×13 pixels. The outputs of 
the primary and complementary paths are concatenated to have a total 
of 192 feature maps which then are fed to the merge path. The merge 
path includes two consecutive convolutional layers of Conv (3×3)×32 
and Conv (3×3)×128, one MaxPooling (3×3) layer, a fully connected 
layer with 512 neurons and finally one neuron as the output. For 
convolutional layers, the values in the parentheses show the 
dimensions of the filters, and the third value indicates the number of 
filters. 

 
Figure 1: The target and complementary windows in two consecutive frames. 

It should be noted that the windows are shown relatively larger for 

presentation purposes. 
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A rectified linear unit is used as the activation function for the 
hidden layers. A sigmoid activation function is used for the output 
layer to have the occurrence probability of two classes. For each 
convolutional layer, a dropout rate of 0.3 is considered to minimize the 
overfitting effect. Based on the benchmark presented in [31], the Adam 
optimizer with a learning rate of 0.001 is an optimal choice for the 
network. 

 

 
Figure 2: The target and complementary windows in two consecutive frames. 

 

4.0 SETUP AND EXPERIMENTS  
 

4.1 Data acquisition 

Deep learning needs a huge amount of data to work [32]. In order to 
provide this study with a sufficient amount of data, echocardiographic 
sequences of 65 people were obtained with the help of expert 
cardiologists and in collaboration with Rajaie Cardiovascular Medical 
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& Research Center (RCMRC), Tehran, Iran. The subjects included 
males and females with both normal and ischemic cardiac conditions. 
Written informed consent for gathering this dataset was taken from all 
the subjects, and the study was approved by the ethics committee of 
RCMRC. The echocardiography was performed in all the three views 
of the apical 4-chamber, apical long-axis and parasternal short-axis for 
each subject. A clinical echocardiography ultrasound system (GE Vivid 
7, GE Medical System, Milwaukee, Wisconsin, USA) with a 1.7 MHz 
phased array probe was used for this purpose. The sequences were 
captured with different frame rates between 42 and 68 with the size of 
640×480 pixels. Based on the physical condition of each subject, 
different depths from 13 to 22 cm were considered for the 
echocardiography. 

 

4.2 Dataset Preparation 

A dataset including paired patches for main and complementary input 
gates was needed to feed and train the proposed network. Therefore, 
an average of 10 patches with different sizes ranging from 12×12 to 
48×48 pixels were randomly extracted from each frame, except the last 
one, of all the sequences. Then, for each extracted target patch, its 
complimentary patch from the next frame was extracted with the same 
centre. As explained in Section 3, the size of the complementary patch 
in frame b was considered twice the size of its associated target patch 
in frame a. However, to feed the network, the patches were eventually 
resized to the dimensions of the corresponding input layer, i.e. 30×30 
and 40×40 pixels for the main and complementary pathways. The most 
important part was manually labelling the paired patches as trackable-
speckle or non-trackable. For this purpose, three experts in 
echocardiography performed annotating tasks based on the criterion 
classification explained in Section 2.1. Then, the consensus of the three 
experts was considered as the final labels. 

Overall, the dataset was prepared with 15000, 3500 and 11000 (total 
29500) samples for training, validation, and testing. The category 
distribution in each dataset was considered roughly balanced between 
the two classes. In order to have a reliable evaluation, patches for 
training, validation and testing were extracted from completely 
different subjects. Several samples from a total of 29500 extracted 
patches are shown in Figure 3. Subplots (a) and (b) display trackable-
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speckle or non-trackable pattern samples that are considered as the 
target patches. Subplots (c) and (d) present the corresponding 
complementary patches extracted from the next frame for the samples 
in subplots (a) and (b), respectively. 

 

Figure 3: A few samples from a total of 29500 extracted patches. (a) and (b) 

display trackable-speckle and non-trackable samples. (c) and (d) present the 

corresponding complementary patches for the samples in subplots (a) and 

(b), respectively. 

 

4.3 Implementation 

SpeckleDNet was implemented in Python 3 using TensorFlow 2.0 and 
Keras framework. The source code is available for public usage at 
https://github.com/mitechworld/SpeckleDNet. A system with an Intel 
Core i7 CPU and 8 gigabytes of RAM was used to conduct the 
experiments. To increase the training speed, multicore processing on 
the CPU was also employed. 

 

4.4 Metrics 

In this study, categorizing a window as a trackable-speckle is 
considered a positive output. Thus, if a window truly contains a 
trackable-speckle pattern, it counts as a True Positive (TP) prediction. 
When the window has a non-trackable pattern but is categorized as a 
trackable-speckle, it should be considered a False Positive (FP) 
prediction. On the contrary, True Negative (TN)/False Negative (FN) 
represents the number of observations predicted correctly/wrongly as 
non-trackable. In speckle tracking, it is important to track only the 
windows with the trackable-speckle pattern even if the price is to 
ignore some of them. In other words, although the model should 
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correctly identify trackable-speckle windows as much as possible 
(decreasing the FN number), it is not preferred to tag a non-trackable 
window as a trackable-speckle (decreasing the FP number) because it 
eventually leads to a poor tracking result. 

On the one hand, a metric is desired to demonstrate how much a 
model is good in assigning trackable-speckle labels only to those 
windows that are, in fact, with a trackable-speckle pattern. This can be 
measured by Precision which is formulated as (3). On the other hand, 
it is necessary to measure the general ability of a model in finding the 
trackable-speckle windows. Recall is a common metric for this purpose 
and is calculated based on (4). The optimal values for these metrics are 
achievable by changing the probability threshold of the classifier and 
plotting the precision-recall curve. 

Overall, in order to evaluate a model with regard to both Precision 
and Recall, two popular measures are F1-score (5) and the area under 
the precision-recall curve (AUPRC). F1 measures the ability of a model 
for a specific probability threshold, whereas AUPRC summarizes the 
model's ability across thresholds. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

 

4.5 The procedure of tuning CNN Parameters 

To find the optimal parameters for the network and achieve the 
proposed model, i.e. SpeckleDNet, several network structures through 
grid search were carefully trained and tested on the train and 
validation datasets, respectively. Grid search is a hyper-parameter 
tuning method in which different parameters are considered to find the 
optimal combination of values for the network. All the networks were 
compared based on their AUPRC score for tuning the parameters. As 
discussed in Section 3, the proposed network has a dual-path structure 
that includes the main and complementary pathways. Therefore, the 
parameters were first tuned for the main pathway alone, and then they 
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were adjusted for the complementary pathway considering the 
configured main pathway. 

In the first series of experiments, a single-path structure was the 
subject of inquiry to find the optimal dimensions of the input layer, the 
number of layers and filters for the main path. Table 2 contains three 
networks with different numbers of layers where w is a coefficient for 
the number of filters. Accordingly, different numbers of filters were 
generated by assigning selected values of 10, 16 and 22 to the coefficient 
w. After finding the structure with the optional number of layers and 
filters, dimensions between 14×14 and 46×46 were tested as the input 
size for the elected structure. 

 

Table 2: Three candidate structures for the main pathway 
Number of 
convolution 

layers 
  Structure 

3 Conv(3× 3)× 2w, 
Conv(3×3)×4w, 
MaxPooling(2×2), 
Conv(3×3)×16w, 
FC×32w 

4 Conv(3× 3)× 2w, 
Conv(3×3)×4w, 
MaxPooling(2×2), 
Conv(3×3)×8w, 
Conv(3×3)×16w, 
MaxPooling(2×2), 
FC×32w 

 5 Conv(3× 3)× 2w, 
Conv(3×3)×4w, 
MaxPooling(2×2), 
Conv(3×3)×8w, 
Conv(3×3)×8w, 
MaxPooling(2×2), 
Conv(3×3)×16w, 
MaxPooling(2×2), 
FC×32w 

 Note: w is the coefficient for the number of filters. 

 

The second series of experiments concerned the complementary 
path with regard to the chosen main pathway. As shown in Table 3, 
three structures with a different number of layers were examined to 
find the optimal combination of convolution and pooling layers. 
Considering that the output dimensions of the complementary 
pathway should be the same as the primary pathway's, the input size 
for a particular structure was fixed. Similar to the first series of 
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experiments, coefficient w was replaced by 10, 16 and 22 to generate 
different numbers of filters. The results of these experiments are 
presented in Section 5.1. 

 
Table 3. Three candidate structures for the complementary pathway 

Number of 
convolution 

layers 
  Structure 

2 Conv(3× 3)× 2w, 
MaxPooling(2×2), 
Conv(3×3)×4w 

4 Conv(3× 3)× 2w, 
MaxPooling(2×2), 
Conv(3×3)×4w, 
Conv(3×3)×4w, 

  Conv(3×3)×4w 
6 Conv(3× 3)× 2w, 

MaxPooling(2×2), 
Conv(3×3)×4w, 
Conv(3×3)×4w, 
Conv(3×3)×4w, 
Conv(3×3)×4w, 

  Conv(3×3)×4w 

Note: w is the coefficient for the number of filters. 

 

4.6 Comparing SpeckleDNet with a conventional approach 

A set of experiments were conducted to compare the classification 
results of SpeckleDNet and the conventional approaches (which consist 
of two parts of feature extraction and classification). As explained in 
Section 2.2, a combination of sixteen features and three classifiers were 
selected, which are used as the conventional method. In order to have 
a fair comparison, the conventional methods were evaluated on the 
same dataset as for SpeckleDNet. All the methods were compared 
based on Precision, Recall and F1 scores. 

 

4.7 Evaluation of SpeckleDNet in speckle tracking 

In this set of experiments, the goal was to investigate the impact of the 
proposed speckle detection method in speckle tracking and compare it 
with others. For this purpose, a synthetic database generated and 
explained by [33,34] was used. This dataset consists of 8 synthetic 
ultrasound sequences. The simulated sequences appear similar to real 
ultrasound recordings, yet, the myocardial motion is fully controlled 
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by the electromechanical (E/M) model in [35]. Therefore, it is a feasible 
alternative for the evaluation of different speckle tracking applications 
because we can calculate the accuracy of displacement estimation 
based on the ground truth data. In fact, in the simulated model, we 
have access to the nodes and their positions in each frame. In order to 
evaluate speckle tracking accuracy, a window around a node is first 
selected and then tracked over the consecutive frames. The error 
between the estimated position and the ground truth position shows 
the accuracy of speckle tracking. However, as explained earlier, not 
every node is suitable for tracking, and it could lead to a miscalculation 
of displacements. Therefore, a set of suitable nodes for tracking were 
chosen using the proposed speckle detection network, and only those 
nodes were tracked. The overall error was compared with the case in 
which the same number of nodes were chosen randomly for tracking. 
To achieve a more reliable conclusion, the process was repeated with a 
different number of nodes, and the errors were averaged at the end. 
The results are explained in section 5. 

 

5.0 RESULTS AND DISCUSSION 
 

5.1 Choosing the parameters of SpeckleDNet 

Based on the procedure in Section 4.5, several network structures were 
carefully tested to find the best hyper-parameters for the proposed 
SpeckleDNet. The result of trying different numbers of layers and 
filters for the main path is shown in Figure 4, from which it is 
understandable that increasing the number of layers and filters did not 
necessarily lead to better performance. Based on the maximum AUPRC 
of 0.963, the 4-layer architecture with the filter coefficient w=16 was 
selected for the main path. For the selected structure, the AUPRC scores 
of 0.947, 0.958, 0.964, 0.955 and 0.949 were recorded for different 
dimensions of 14×14, 22×22, 30×30, 38×38 and 46×46 pixels, respectively. 
The result illustrates that enlarging the input size might cause an 
improvement but only to a certain point after which the performance 
decreases. Therefore, the dimensions of 30×30 pixels with a maximum 
score of 0.964 were considered the optimal window size for the main 
pathway input. 
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Figure 4: The result of trying different numbers of layers and filters for the 

main path. 

Similarly, the best configuration for the complementary path was 
selected from nine candidate networks whose AUPRC scores are 
shown in Figure 5. The structure with four layers and the filter 
coefficient w=10 achieved the maximum score of 0.978. Based on the 
selected structure and the desired output size, there was no choice but 
to consider the input size as 40×40 pixels for the complementary 
pathway. With this configuration, the total number of trainable 
parameters for the proposed network reached 3,063,489. 

 
Figure 5: The result of trying a different number of layers and filters for the 

complementary path. 
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Comparing the results of the single-path structure with the dual-
path structure reveals that using the complementary pathway led to an 
increase in the AUPRC score. It demonstrates that using the 
information in the next frame was beneficial for trackable speckle 
detection. 

 

5.2 Performance of SpeckleDNet 

The proposed method in this study for trackable speckle detection was 
compared with three common methods in terms of precision, recall, F1-
score and accuracy. The results are presented in Table 4. It is obvious 
that the proposed CNN network with the F1-socre of 0.9484 
outperforms the random forest method, which earned the best F1-score 
(0.8910) in comparison to KNN (0.8591) and AdaBoost (0.8769). The 
same conclusion can be made based on the accuracy score as well. 
SpeckleDNet achieved an accuracy of 94.60% in trackable speckle 
detection while the other three methods achieved the maximum 
accuracy of 88.56%. 

 
Table 4. Comparison between the proposed method and three common 

methods for trackable speckle detection 
        First-order and second-order features +  

 KNN Random forest AdaBoost SpeckleDNet 

Precision 0.8121 0.8718 0.8535 0.9316 

Recall 0.9119 0.9110 0.9016 0.9658 

F1 score 0.8591 0.8910 0.8769 0.9484 
Accuracy 0.8465 0.8856 0.8701 0.9460 

 

5.3 Performance of SpeckleDNet 

The averaged error of displacement estimation was calculated as 7.16 
mm ± 1.02 mm (mean error ± std) for the case in which all the nodes 
were selected by our proposed method. In comparison, for randomly 
selected nodes, it was calculated as 9.49 mm ±0.49 mm. The p-value, 
calculated as 0.00066 ("0.05), shows that the performance is significant. 

 

6.0 CONCLUSION  

This study introduces a customized convolutional neural network with 
a dual-path structure named SpeckleDNet for speckle detection. The 
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network was trained and evaluated on a dataset with 29500 ultrasound 
image patches of trackable-speckle or non-trackable patterns. The 
results showed that the proposed CNN-based method performs 
considerably better than the existing methods. The F1-score and 
accuracy of SpeckleDNet earned the maximum values of 0.9484 and 
94.60% among all the methods. So, it is recommended that 
SpeckleDNet be used instead of the conventional methods to achieve a 
more accurate trackable speckle detection system. 
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